Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate the rigidity transition associated with shear jamming in frictionless, as well as frictional, disk packings in the quasi-static regime and at low shear rates. For frictionless disks, the transition under quasi-static shear is discontinuous, with an instantaneous emergence of a system spanning rigid clusters at the jamming transition. For frictional systems, the transition appears continuous for finite shear rates, but becomes sharper for lower shear rates. In the quasi-static limit, it is discontinuous as in the frictionless case. Thus, our results show that the rigidity transition associated with shear jamming is discontinuous, as demonstrated in the past for isotropic jamming of frictionless particles, and therefore a unifying feature of the jamming transition in general.more » « less
-
null (Ed.)Granular packings display the remarkable phenomenon of dilatancy, wherein their volume increases upon shear deformation. Conventional wisdom and previous results suggest that dilatancy, also being the related phenomenon of shear-induced jamming, requires frictional interactions. Here, we show that the occurrence of isotropic jamming densities ϕ j above the minimal density (or the J-point density) ϕ J leads both to the emergence of shear-induced jamming and dilatancy in frictionless packings. Under constant pressure shear, the system evolves into a steady-state at sufficiently large strains, whose density only depends on the pressure and is insensitive to the initial jamming density ϕ j . In the limit of vanishing pressure, the steady-state exhibits critical behavior at ϕ J . While packings with different ϕ j values display equivalent scaling properties under compression, they exhibit striking differences in rheological behaviour under shear. The yield stress under constant volume shear increases discontinuously with density when ϕ j > ϕ J , contrary to the continuous behaviour in generic packings that jam at ϕ J . Our results thus lead to a more coherent, generalised picture of jamming in frictionless packings, which also have important implications on how dilatancy is understood in the context of frictional granular matter.more » « less
-
Soft materials are usually defined as materials made of mesoscopic entities, often self-organised, sensitive to thermal fluctuations and to weak perturbations. Archetypal examples are colloids, polymers, amphiphiles, liquid crystals, foams. The importance of soft materials in everyday commodity products, as well as in technological applications, is enormous, and controlling or improving their properties is the focus of many efforts. From a fundamental perspective, the possibility of manipulating soft material properties, by tuning interactions between constituents and by applying external perturbations, gives rise to an almost unlimited variety in physical properties. Together with the relative ease to observe and characterise them, this renders soft matter systems powerful model systems to investigate statistical physics phenomena, many of them relevant as well to hard condensed matter systems. Understanding the emerging properties from mesoscale constituents still poses enormous challenges, which have stimulated a wealth of new experimental approaches, including the synthesis of new systems with, e.g. tailored self-assembling properties, or novel experimental techniques in imaging, scattering or rheology. Theoretical and numerical methods, and coarse-grained models, have become central to predict physical properties of soft materials, while computational approaches that also use machine learning tools are playing a progressively major role in many investigations. This Roadmap intends to give a broad overview of recent and possible future activities in the field of soft materials, with experts covering various developments and challenges in material synthesis and characterisation, instrumental, simulation and theoretical methods as well as general concepts.more » « less
An official website of the United States government
